A more cost-effective EMAP-Estuaries benthic macrofaunal sampling protocol

Steven P. Ferraro (presenter)
Research Aquatic Biologist
EMAP Symposium
May 3-7, 2004

Authors

Western Ecology Division

Steven P. Ferraro Faith A. Cole Anthony R. Olsen

EMAP Benthic Macrofaunal Sampling Protocols

	East & Gulf Coasts	West Coast
Then	0.04 m ² grab 0.5 mm mesh sieve 5 -3 reps per station 30-50 stations	
Now*	0.04 m ² grab 0.5 mm mesh sieve 1 rep per station 30-50 stations	0.1 m ² grab 1.0 mm mesh sieve 1 rep per station 30-50 stations

*U.S. EPA 2001. Environmental Monitoring and Assessment Program (EMAP): National Coastal Assessment Quality Assurance Project Plan 2001-2004. EPA/620/R-01/002.

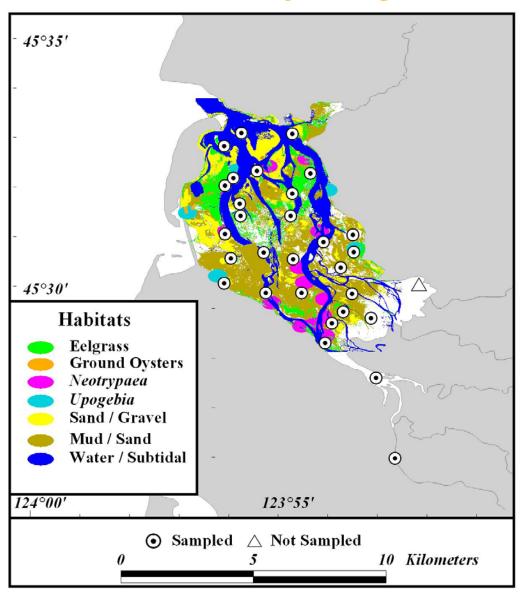
Statement of Premise

If the EMAP-W sample unit is effective, and

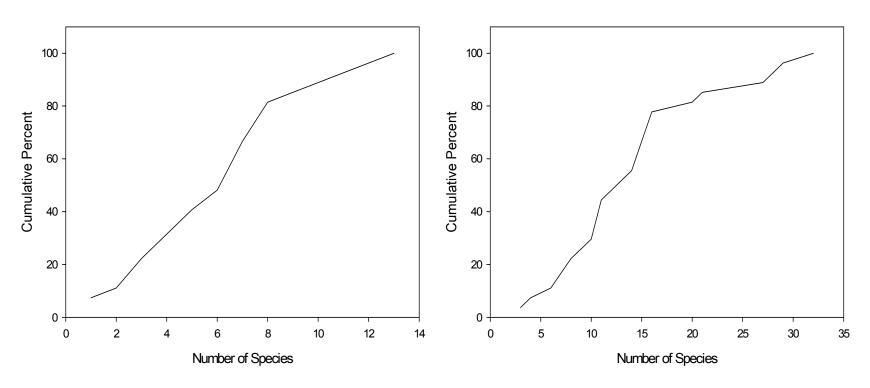
if an alternative sample unit provides data which is only different in scale to that obtained by the EMAP-W sample unit (i.e., equivalent conclusions are reached with both data), and

samples collected using the alternative sample unit are less costly to collect and process then the EMAP-W sample unit, then

the alternative sample unit is more cost-effective.


EMAP-W (0.1 m²) benthic macrofaunal sample *versus*

0.01 m² x 5 cm deep (two 8-cm dia core) sample



Tillamook Bay, Oregon

CDFs for Number of Species

0.01 m² x 5 cm deep sample data

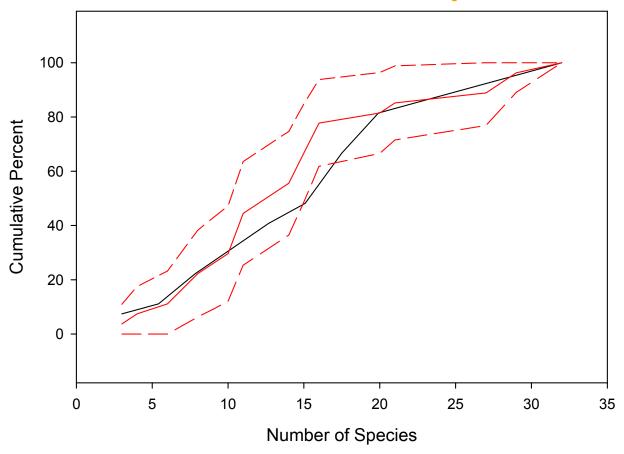
EMAP-W (0.1 m²) sample data

Linear Scale Transformation

adjusts for mean shift and scale change in distribution

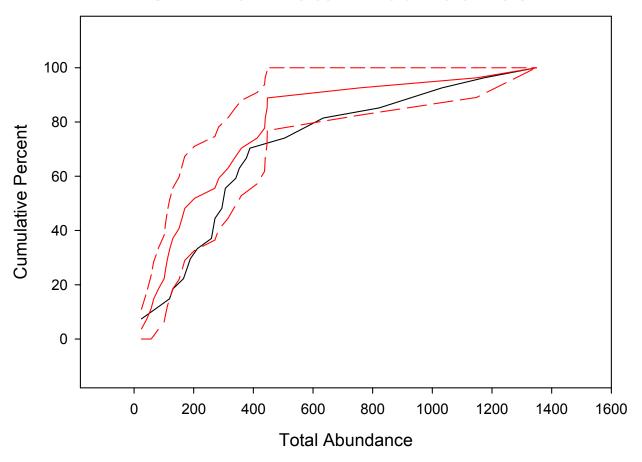
 $X_t = [Y_{min} - (X_{min} * range Y)/range X] + (range Y/range X) X$

EMAP-W (0.1 $m^2 x \ge 7$ cm deep, 1.0 mm) data

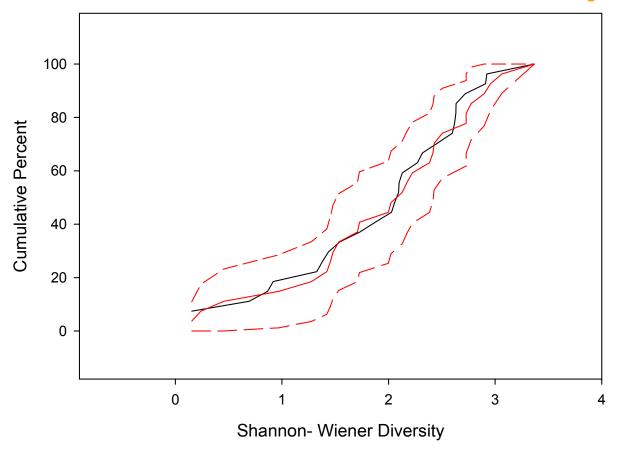

versus

Linear Scale Transformed

 $0.01 \text{ m}^2 \text{ x 5 cm deep, } 1.0 \text{ mm data}$


CDF for Number of Species

EMAP-W sample data —, 95% confidence limits ---0.01 m² x 5 cm deep sample data, transformed ——
F-based Wald test, p > 0.05

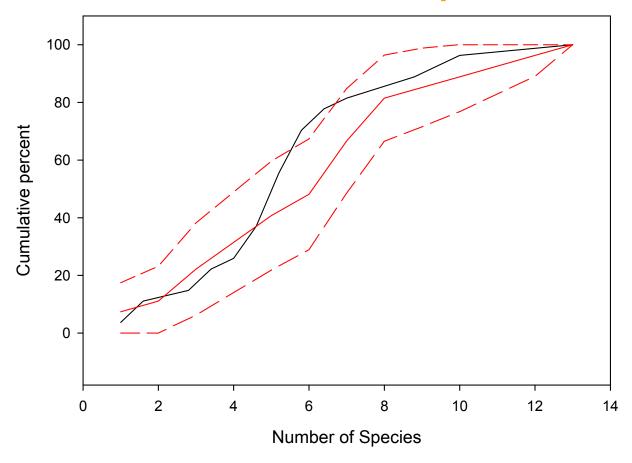

CDF for Total Abundance

EMAP-W sample data ——, 95% confidence limits ———
0.01 m² x 5 cm deep sample data, transformed ——
F-based Wald test, p > 0.05

CDF for Shannon-Wiener Diversity

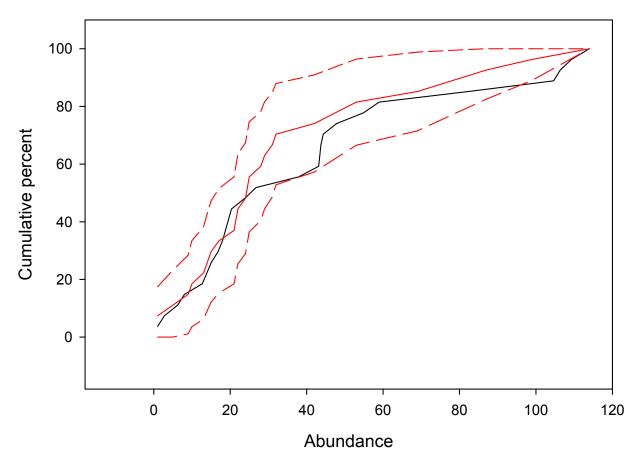
EMAP-W sample data ——, 95% confidence limits ———
0.01 m² x 5 cm deep sample data, transformed ——
F-based Wald test, p > 0.05

0.01 m² x 5 cm deep, 1.0 mm data

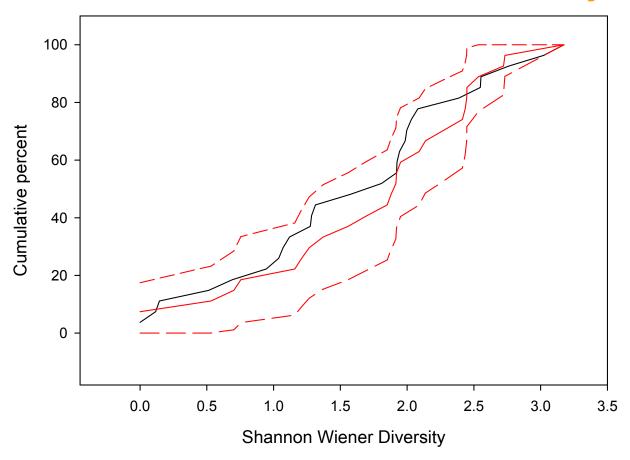

versus

Linear Scale Transformed

0.01 m² x 5 cm deep, 0.5 mm data


CDF for Number of Species

1.0 mm data — , 95% confidence limits ---0.5 mm data, transformed — F-based Wald test, p > 0.05


CDF for Total Abundance

1.0 mm data ——, 95% confidence limits ---0.5 mm data, transformed ——
F-based Wald test, p > 0.05

CDF for Shannon-Wiener Diversity

1.0 mm data ——, 95% confidence limits ———
0.5 mm data, transformed ——
F-based Wald test, p > 0.05

"Cost" Savings (excluding overhead)

• ~90% reduction in sample processing (sieve, sort, identify, and count specimens) time and effort.

\$ Cost Savings (including overhead)

Lab and field \$ cost comparison for the Tillamook Bay EMAP-W benthic macrofaunal field study

EMAP-W samples: \$50,000

 $0.01 \text{ m}^2 \text{ x 5 cm deep samples:} $27,500$

Cost savings: \$22,500 or 45%.

Some Reasons for Using a Particular Sample Unit

- only or best sample gear available ("It's what I got.")
- intuition ("I think it will meet my study's objective.")
- historical precedent ("I/We've always done it that way.")
- standardization ("I want to compare or combine my data with other data.")
- effective ("It meets my study's objective.")
- cost-effective ("It meets my study's objective, and it's least costly.")

Recommendation

- Collect and separately process subsamples (e.g., 0.01 m²) from current EMAP-Estuaries benthic macrofaunal samples (0.04 and 0.1 m²).
- Compare CDFs based on subsample data and whole sample data on endpoints of interest after linear scale transformation of the subsample data.
- If the CDFs are consistently not significantly different, the test data can be used to calibrate subsample with whole sample data (providing continuity with the historical data), and more cost-effective future studies can be conducted using the smaller sample units.

